Привод сцепления

Привод сцепления

Привод сцепления предназначен для обеспечения выключения сцепления, а именно отжимания диафрагменной пружины. На современных автомобилях применяются приводы сцепления следующих видов: механический, гидравлический и электрогидравлический.

Наибольшее применение в автомобиле нашли механический и гидравлический приводы сцепления. Электрогидравлический привод используется для автоматизации управления сцеплением в роботизированной коробке передач, например, в коробке передач Easytronic.

Механический привод сцепления

Механический привод используется в качестве привода сцепления небольших легковых автомобилей. Данный вид привода отличает простота конструкции и невысокая стоимость.

Механический привод сцепления объединяет педаль сцепления, приводной трос и рычажную передачу. На тросе располагается механизм регулирования свободного хода педали сцепления.

Основным конструктивным элементом механического привода сцепления является трос, который соединяет педаль сцепления с вилкой выключения. Трос заключен в оболочку. При нажатии на педаль сцепления усилие через трос передается на рычажную передачу, которая в свою очередь перемещает вилку сцепления и обеспечивает выключение сцепления.

В системе предусмотрен механизм регулирования свободного хода педали сцепления, включающий регулировочную гайку на конце троса. Необходимость регулировки обусловлена постепенным изменением положения педали сцепления вследствие износа фрикционных накладок.

Гидравлический привод сцепления

Гидравлический привод сцепления по конструкции аналогичен гидравлическому приводу тормозной системы. В нем используется свойство несжимаемости жидкости. В качестве рабочей жидкости применяется тормозная жидкость.

Гидравлический привод сцепления имеет более сложную конструкцию. Помимо педали привод включает главный и рабочий цилиндры, бачек рабочей жидкости и соединительные трубопроводы.

Конструктивно главный и рабочий цилиндры состоят из поршня с толкателем, размещенных в корпусе. При нажатии на педаль сцепления толкатель перемещает поршень главного цилиндра, происходит отсечка рабочей жидкости от бачка. При дальнейшем движении поршня рабочая жидкость по трубопроводу поступает в рабочий цилиндр. Под воздействием жидкости происходит движение поршня с толкателем. Толкатель воздействует на вилку сцепления и обеспечивает выключение сцепления.

Для удаления воздуха из системы гидропривода сцепления (прокачки системы) на главном и рабочем цилиндрах установлены специальные клапаны (штуцеры).

Для облегчения управления на некоторых моделях автомобилей используются пневматический или вакуумный усилитель привода сцепления.

Какие бывают виды приводов сцепления и их принцип работы

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления:
1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

Устройство автомобилей

Ступенчатые трансмиссии

Привод сцепления

Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Применение на автомобиле того или иного привода определяется типом сцепления, компоновкой автомобиля и рядом требований по обеспечению легкости и удобства управления.
Так, полный ход педали сцеплении не должен превышать 190 мм, а усилие на педали – 150 Н для легкового автомобиля и 250 Н для грузового автомобиля. Поэтому общее передаточное число в существующих конструкциях привода сцепления находится в пределах от 25 до 50.
В случае, если для обеспечения работы сцепления необходимо более высокое передаточное число, применяют усилители разных типов.

Механический привод сцепления

Механический привод сцепления прост по конструкции и надежен в эксплуатации, но обладает меньшим КПД по сравнению с гидравлическим приводом, поскольку в шарнирных сочленениях составляющих привод тяг, рычагов, в оболочках гибких валов теряется много энергии из-за сил трения. Поэтому такой тип привода применяется, как правило, если сцепление находится вблизи от органов управления (педали сцепления).

Существуют тросовый и рычажный механические приводы сцепления.

Тросовый привод (рис. 1, а) применяется на легковых переднеприводных автомобилях. Педаль 14 имеет верхнюю опору на кронштейне 16 и соединена с наконечником 10 троса. Трос заключен в оболочку 1, имеющую два наконечника. Верхний наконечник 12 оболочки выведен в салон автомобиля и упирается в упорную пластину 11, а нижний наконечник 2 оболочки закреплен в кронштейне 3 на картере сцепления.
Нижний наконечник 5 троса через поводок 8 соединен с рычагом 9 вилки выключения сцепления.
Регулировка хода педали осуществляется шайбами 6.

При нажатии на педаль сцепления трос перемещается внутри оболочки и перемещает рычаг вилки выключения сцепления, которая в дальнейшем воздействует на муфту выключения сцепления.

Рычажный привод грузового автомобиля (рис. 1, б) обеспечивает передачу усилия на сцепление при его выключении следующим образом.
При воздействии на педаль 14, закрепленную на валу 20, поворачивается рычаг 18, связанный с противоположным концом вала. Рычаг вала перемещает прикрепленную к нему на оси тягу 19, которая связана с рычагом 17 вилки выключения сцепления. Вместе с вилкой перемещается прижатая к ней с помощью пружины муфта выключения сцепления. После выбора зазора между подшипником выключения сцепления и рычагами начнется выключение сцепления.

Зазор в сцеплении должен быть равен 3…4 мм, что соответствует 35…50 мм свободного хода педали сцепления. Регулировка зазора осуществляется изменением длины тяги 19 (рис. 1) с помощью регулировочной гайки 22.
Отсутствие зазора или его недостаточная величина в приводе такой конструкции может привести к неполному включению сцепления и, как следствие, к пробуксовке сцепления. Увеличение зазора больше нормы приводит к неполному выключению сцепления, в результате чего возникает шум и треск зубчатых колес при переключении передач.

Гидравлический привод сцепления

Гидравлический привод выключения сцепления позволяет передавать усилие на большое расстояние с высоким КПД, снизить усилие на педали сцепления в результате наличия передаточного числа гидравлической части привода и способствует плавному включению сцепления из-за сопротивления перетеканию жидкости в элементах гидропривода. Он удобен для применения на легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра 3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

При нажатии на педаль сцепления поршень 16 главного цилиндра перемещается влево и после перекрытия компенсационного отверстия 20 вытесняет жидкость через нагнетательный клапан 16 и трубопроводы в рабочий цилиндр. Поршень 14 рабочего цилиндра перемещает толкатель 9, который воздействует на вилку выключения сцепления 7.

При отпускании педали жидкость перетекает из рабочего цилиндра в главный цилиндр через обратный клапан 19 под действием усилия нажимных пружин сцепления и оттяжной пружины вилки 11. Обратный клапан устанавливается для создания небольшого избыточного давления в трубопроводах, которое исключает попадание воздуха в привод в результате возможного повышения давления окружающей среды при выключении сцепления и ускоряет время срабатывания привода при выключении сцепления.

При резком отпускании педали сцепления магистраль пополняется жидкостью через перепускное отверстие 21 и отверстие в поршне 18 главного цилиндра, прикрытое манжетой 19, что также не дает возможности снижения давления в приводе.
Избыток жидкости перетекает в бачок 1 через компенсационное отверстие 20, что позволяет возвратить детали привода в исходное положение.

Привод сцепления

Привод сцепления используется для отжимания диафрагменной пружины, то есть выключения сцепления. На современные транспортные средства устанавливаются следующие виды приводов сцепления: электрогидравлический, гидравлический, механический.

Гидравлический и механический приводы получили наибольшее распространение. Что касается привода электрогидравлического типа, то он применяется в роботизированной коробке передач (например, Easytronic) для автоматизации управления сцеплением.

Механический привод

Преимуществом данного вида привода являются простота конструкции и дешевизна обслуживания. Он используется на небольшом легковом автотранспорте.

Основным элементом конструкции данного привода является трос. Для защиты от внешних факторов трос заключен в оболочку. Основной функцией троса является соединение сцепления с вилкой выключения. Когда водитель давит на педаль сцепления, усилие через трос переходит на рычажную передачу, которая перемещает вилку сцепления, тем самым, обеспечивая выключение сцепления.

Механизм регулирования свободного хода педали имеет специальную регулировочную гайку, расположенную на конце троса. Потребность в регулировке обусловлена изменением положения педали сцепления, которое происходит из-за постепенного стирания фрикционных накладок.

Гидравлический привод

По конструкции данный привод сцепления напоминает гидравлический привод тормозной системы. За основу берется свойство несжимаемости жидкости. Рабочей жидкостью выступает тормозная жидкость.

Главный и рабочий цилиндры имеют аналогичную конструкцию, которая включает корпус и размещенные в нем поршень с толкателем. Когда нажимается педаль сцепления, толкатель передвигает поршень главного цилиндра, что приводит к отсечке рабочей жидкости от бачка. Последующее движение поршня заставляет рабочую жидкость поступать в рабочий цилиндр по трубопроводу. Под давлением жидкости осуществляется движение поршня с толкателем. Далее толкатель воздействует на вилку сцепления, обеспечивая таким образом выключение сцепления.

На главном и рабочем цилиндре имеются штуцеры (клапаны), которые предназначены для вывода воздуха из системы гидропривода.

Привод сцепления

Управление сцеплением в автомобилях с механической коробкой передач производится с помощью педали, но педаль — это лишь один из элементов привода сцепления, а все самое главное скрыто от глаз водителя. О том, что такое привод сцепления, каких он бывает видов, как устроен и как работает, читайте в этой статье.

Назначение и классификация приводов сцепления

Привод сцепления — специальная система, предназначенная для управления сцеплением в автомобилях с механической коробкой передач. С помощью привода усилие от педали передается на вилку выключения сцепления, а через нее — на пружину, что позволяет простым положением педали управлять положением дисков сцепления.

Передать усилие от педали на вилку можно разными способами, и именно на этом строится классификация приводов сцепления. Сегодня выделяют два основных типа привода:

Также существуют комбинированные приводы (электрогидравлический, электромеханический, то есть — с использованием электромоторов), электромагнитный и другие типы приводов, но они не нашли широкого применения в современных автомобилях. Поэтому расскажем только об основных типах привода сцепления.

Схема механического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал
  2. маховик
  3. ведомый диск
  4. нажимной диск
  5. кожух сцепления
  6. нажимные пружины
  7. отжимные рычаги
  8. подшипник выключения сцепления
  9. вилка выключения сцепления
  10. металлический трос
  11. рычаг привода
  12. педаль сцепления
  13. шестерня первичного вала
  14. картер коробки передач
  15. первичный вал коробки передач

Устройство и принцип работы механического привода сцепления

Главная особенность механического привода сцепления в том, что в нем усилие от педали к вилке передается с помощью металлического троса. В состав механического привода входят следующие основные компоненты:

– Педаль сцепления;
– Рычажный привод;
– Трос в гибкой оболочке;
– Вилка выключения сцепления;
– Устройство регулирования свободного хода педали.

Принцип действия механического привода тоже прост: при нажатии на педаль с помощью рычажной передачи трос натягивается и тянет за собой вилку выключения сцепления, которая через муфту и подшипник сжимает пружину — сцепление выключается. Возврат педали производится пружиной. Регулировка свободного хода педали, а также компенсация износа фрикционных накладок на дисках производится с помощью регулировочной гайки, расположенной на конце троса.

Механический привод широко применяется на мотоциклах и легковых автомобилях (где сцепление имеет небольшую массу и требует небольших усилий для управления), он очень прост в производстве и регулировании, надежен и имеет очень низкую стоимость. Однако недостаток механического привода в его трущихся деталях — стальной тросик со временем изнашивается, он может заклинить или оборваться, свободный ход педали увеличивается и т.д. Но, несмотря на это, механический привод сцепления вряд ли в будущем уступит место более совершенным механизмам.

Устройство и принцип работы гидравлического привода сцепления

В гидравлическом приводе сцепления используется принцип передачи усилия с помощью несжимаемой жидкости. Устройство привода не отличается сложностью:

– Педаль сцепления;
– Главный цилиндр;
– Рабочий цилиндр;
– Магистраль гидропривода;
– Бачок с рабочей жидкостью.

Работа гидравлического привода, как и работа любого другого гидропривода, очень проста: при нажатии на педаль происходит сжатие жидкости в главном цилиндре, жидкость под давлением через магистраль поступает в рабочий цилиндр и толкает поршень, который, в свою очередь, с помощью штока толкает вилку выключения сцепления. Возврат вилки и поршней в первоначальное положение происходит за счет пружин при отпускании педали.

Часто в гидравлических приводах сцепления используется та же жидкость, что и в тормозной системе — обе системы питаются жидкостью из одного бачка.

Гидравлический привод имеет более сложную конструкцию и более высокую стоимость, однако он надежен, не подвержен износу и позволяет управлять сцеплением минимальными усилиями. В грузовых автомобилях гидравлический привод часто дополняется пневматическими или гидравлическими усилителями.

Устройство и принцип работы электронного привода сцепления

В последнее время многие компании предлагают совершенно новые конструкции приводов сцепления, которые находят применение в перспективных автомобилях, в том числе гибридных и электрических. Отдельного внимания заслуживает привод «Electronic Clutch System» от компании Bosch.

Electronic Clutch System (дословно — «Электронная система сцепления») — система, которая позволяет на автомобилях с механической коробкой передач реализовать некоторые функции автоматических коробок. В частности, при движении на первой передаче по городским пробкам управление автомобилем производится только педалями газа и тормоза (сцепление выключается при отпускании акселератора), педаль сцепления становится нужной только при переключении на вторую и более высокие передачи.

Электронный привод сцепления объединяет электронный блок педали сцепления, ряд датчиков (датчик положения рычага переключения скоростей, положения педали газа и другие), электронный блок управления и электрогидравлический привод вилки выключения сцепления. Также электронное сцепление связано с электронной системой управления двигателем, благодаря чему при переключении скоростей происходит автоматическое изменение оборотов двигателя.

Электронное сцепление дает возможность реализовать несколько полезных функций, которые снижают утомляемость водителя и уменьшают расход топлива. Как заявляет производитель, экономия топлива может достичь 10% и более, что при современных ценах на бензин даст ощутимый эффект.

На сегодняшний день система Electronic Clutch System находится на стадии тестирования, поэтому применяется ограниченно, но в будущем она может получить самое широкое распространение.

Устройство и принцип работы привода сцепления

Важной составляющей автомобиля, оснащенного механической коробкой передач, является сцепление. Оно состоит непосредственно из муфты (корзины) сцепления и привода. Остановимся более подробно на таком элементе, как привод сцепления, который играет важную роль в общем узле сцепления. Именно при его неисправности муфта теряет свою функциональность. Разберем устройство привода, его виды, а также преимущества и недостатки каждого.

Привод сцепления и его виды

Привод предназначен для дистанционного управления сцеплением непосредственно водителем из салона. Нажатие на педаль сцепления напрямую воздействует на нажимной диск.

Известны следующие виды привода:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наибольшее распространение получили первые два вида. На грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлический устанавливают в машинах с роботизированной коробкой передач.

В некоторых автомобилях для облегчения управления применяется пневматический или вакуумный усилитель привода.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой ценой. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод устанавливается в легковых и малотоннажных грузовых автомобилях.

Механический привод сцепления

К элементам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка выключения сцепления;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления, заключенный в оболочку, является основным элементом привода. Трос сцепления крепится к вилке, а также к педали, находящейся в салоне автомобиля. В момент выжимания педали водителем действие через трос передается на вилку и выжимной подшипник. В результате происходит разъединение маховика двигателя с трансмиссией и, соответственно, выключение сцепления.

В соединении троса и рычажного привода предусмотрен регулировочный механизм, обеспечивающий свободный ход педали сцепления.

Ход педали сцепления представляет собой свободное перемещение до момента срабатывания привода. Расстояние, пройденное педалью без особого усилия водителя при нажатии, и есть свободный ход.

Если переключение передач сопровождается шумом, а в начале движения наблюдаются небольшие рывки автомобиля, то необходима регулировка хода педали.

Зазор в сцеплении должен находиться в пределах 35-50 мм свободного хода педали. Нормативы этих показателей указаны в технической документации автомобиля. Регулировка хода педали осуществляется путем изменения длины тяги с помощью регулировочной гайки.

В грузовых автомобилях используется не тросовый, а рычажный механический привод.

К плюсам механического привода относятся:

  • простота устройства;
  • невысокая стоимость;
  • надежность в эксплуатации.

Главным минусом считается более низкий КПД по сравнению с гидроприводом.

Гидравлический привод сцепления

Гидропривод имеет более сложную конструкцию. К его элементам, помимо выжимного подшипника, вилки и педали, относится также гидравлическая магистраль, которая заменяет трос сцепления.

Схема гидравлического сцепления

По сути эта магистраль аналогична гидроприводу тормозной системы и состоит из следующих элементов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и трубопровод с тормозной жидкостью.

Устройство главного цилиндра сцепления напоминает устройство главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенных одном в корпусе. Также к его элементам относятся резервуар для жидкости и уплотнительные манжеты.

Рабочий цилиндр сцепления, имеющий схожую с главным цилиндром конструкцию, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидропривода такой же, как и у механического, только усилие передается с помощью находящейся в трубопроводе жидкости, а не через трос.

Во время нажатия водителем на педаль усилие через шток передается на главный цилиндр сцепления. Затем за счет несжимаемого свойства жидкости в действие приводятся рабочий цилиндр сцепления и рычаг привода выжимного подшипника.

В качестве плюсов гидропривода можно выделить следующие его особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительное расстояние с высоким КПД;
  • сопротивление перетеканию жидкости в элементах гидропривода способствует плавному включению сцепления.

Главный минус гидропривода – более сложный ремонт по сравнению с механическим. Течь рабочей жидкости и попадание в систему гидропривода воздуха — вот, пожалуй, наиболее распространенные поломки, которыми могут «похвастаться» главный и рабочий цилиндры сцепления.

Гидропривод применяется в легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Приводы управления сцеплением

Механический привод выключения сцепления применяют на большинстве отечественных грузовых автомобилей, так как он наиболее прост по конструкции и удобен в эксплуатации. Основными деталями (см. рисунок 1.6) привода выключения сцепления автомобиля ЗИЛ- 130 являются педаль, которая закреплена на валу 5, связанном тягой 6 с рычагом 7 и вилкой 3 выключения сцепления.

При нажатии на педаль 7 все детали привода приходят во взаимодействие, в результате чего подшипник 2 муфты нажимает на внутренние концы рычагов выключения, нажимный диск отводится, а ведомый освобождается от усилия нажатия и сцепления выключается.

При включении сцепления педаль отпускают, муфта с подшипником под действием возвратной пружины 4 занимает исходное положение, освобождая рычаги выключения, и сцепление включается.

1 – педаль; 2 – нажимной подшипник; 3 – вилка выключения

сцепления; 4 – возвратная пружина; 5 – вал; 6 – тяга; 7 – рычаг

Рисунок 1.6 – Привод выключения сцепления автомобилей ЗИЛ-130

Гидравлический привод выключения сцепления сложнее по конструкции, чем механический, но он обеспечивает более плавное включение и допускает свободное расположение педали привода по отношению к механизму сцепления.

На автомобиле ГАЗ-24 гидропривод сцепления (см. рисунок 1.2) включает педаль 16, главный 15 и рабочий 14 цилиндры, а также толкатель 12, действующий на вилку 9 включения сцепления. Главный и рабочий цилиндры привода соединены трубопроводом.

Педаль подвешена на оси к кронштейну кузова. К педали шарнирно присоединен толкатель главного цилиндра, действующий на поршень. Перемещение поршня при нажатии на педаль показанное на рисунке 1.2 штрихпунктирной линией, вызывает перетекание жидкости по трубопроводу и повышение давления в рабочем цилиндре. В результате поршень рабочего цилиндра тоже начинает двигаться и через толкатель 12 действует на вилку 9, которая перемещает выжимной подшипник и выключает сцепление. Возврат педали в исходное положение после ее отпускания происходит под действием оттяжной пружины.

Пневматический усилитель привода сцепления служит для уменьшения усилия на педаль сцепления при выключении. Усилитель состоит из трех основных частей: источника пневматической энергии (компрессор и баллон со сжатым воздухом), исполнительного механизма Б (см. рисунок 1.7) и распределительного устройства А. Корпус усилителя состоит из двух частей 5, между которыми зажата мембрана. В корпусе усилителя расположены гидравлический 12, пневматический 11 и следящий поршни. Рабочая жидкость от главного цилиндра через трубку 3 и отверстие 14 подводится одновременно в цилиндр исполнительного механизма Б и к торцу следящего поршня распределительного устройства А.

При нажатии на педаль сцепления давление жидкости передается на гидравлический поршень 12 исполнительного механизма и следящий поршень в распределительном устройстве А, который, перемещаясь, открывает впускной клапан. Через открывшийся впускной клапан сжатый воздух от баллона поступает по каналу 10 под пневматический поршень 11 исполнительного механизма. Суммарное усилие от действия обоих поршней передается на толкатель 6 вилки выключения сцепления. Давление жидкости и воздуха устанавливается пропорционально усилию на педали 1 сцепления.

При отпускании педали сцепления впускной клапан закрывается. Поршни под действием пружин отходят в исходное положение, и воздух из пневмоцилиндра выпускается в атмосферу.

1– педаль сцепления; 2– главный цилиндр; 3 и 4 – трубки соответственно для жидкости и сжатого воздуха; 5 – части корпуса пневматического усилителя; 6 – толкатель; 7 – возвратная пружина; 8 – рычаг (вилка) выключения сцепления; 9 – отводка; 10 – канал сжатого воздуха от впускного клапана; 11 – пневматический поршень; 12 – гидравлический поршень; 13 – рабочий цилиндр; 14 – отверстие; А – распределительное устройство; Б – исполнительный механизм

Рисунок 1.7 Пневматический усилитель привода сцепления автомобиля КамАЗ

1. Назначение сцепления автомобиля.

2. Устройство и принцип работы однодискового механизма сцепления.

3. Устройство ведомого диска сцепления.

4. Устройство и принцип работы однодискового механизма сцепления с центральной диафрагменной нажимной пружиной.

5. Устройство и принцип работы двухдискового механизма сцепления.

6. Устройство и принцип работы механического привода выключения сцепления.

7. Устройство и принцип работы гидравлического привода выключения сцепления.

8. Устройство и принцип работы пневматического усилителя привода сцепления.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9368 – | 7423 – или читать все.

193.151.241.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Привод сцепления: типы и причины неисправности

Привод сцепления является очень важной частью автомобиля. Даже малейшая неисправность в приводе может привести к полному отсутствию возможности дальнейшей эксплуатации авто.

Трансмиссия – основной узел автомобиля, для стабильности работы которого должно правильно функционировать сцепление.

Предназначение привода сцепления

При возникновении проблем со сцеплением первым делом обращаем внимание на установленный привод. Привод сцепления – система, предназначенная для обеспечения включения или выключения сцепления путем отжима диафрагменной пружины. На сегодняшний день различают следующие виды:

  1. Механический – наиболее распространенный в легковых автомобилях. Основными преимуществами является простата конструкции, надежность работы и взаимозаменяемость элементов системы, а также небольшая стоимость проведения ремонтных работ.
  2. Гидравлический привод сцепления – работает по принципу тормозной системы в автомобиле, то есть имеются нагнетательные цилиндры и рабочая жидкость в системе трубопроводов.
  3. Электрогидравлический тип передачи движения к вилке переключения устанавливается в автомобилях для управления работы сцепления с роботизированной коробкой передач.

Из чего состоит привод сцепления

Из-за абсолютно разных принципов работы механического и гидравлического привода, они состоят из различных элементов.

Механический привод состоит из следующих деталей:

  1. Педаль сцепления, которая установлена в кабине автомобиля.
  2. Трос привода. Именно благодаря этому связующему звену происходит передача движения от педали к механизму включения сцепления, а именно к вилке переключения.
  3. Механизм регулирования хода педали сцепления.
  4. Рычажная передача.

Регулировка привода сцепления производится при помощи специального механизма, который ограничивает ход педали. Регулировка происходит с учетом износа фрикционных дисков сцепления в процессе эксплуатации автомобиля.

Гидравлический тип привода состоит из следующих элементов:

  1. Педаль сцепления.
  2. Главный исполнительный цилиндр.
  3. Емкость для хранения рабочей жидкости.
  4. Рабочий цилиндр.
  5. Система трубопроводов.

Устройство привода сцепления работающего при помощи гидравлики основано на использовании рабочей жидкости и двух цилиндров. При нажатии педали главный исполнительный цилиндр, состоящий из корпуса, штока и поршня, толкает жидкость по трубкам к рабочему цилиндру, где под действием давления перемещается поршень со штоком, и, в свою очередь, поворачивает вилку переключения сцепления.

Электрогидравлическая система очень схожа с обычным гидравлическим приводом. Исключением является только то, что цилиндр приводится в действие за счет подачи команды от компьютера автомобиля и работы специального сжимающего механизма.

Основные неисправности

Основным неисправностями приводов сцепления является выход из строя одного из элементов системы вследствие износа.

В механическом приводе сцепления чаще всего выходит из строя трос, который связывает педаль сцепления и вилку переключения. Вследствие износа трос может порваться, перекрутиться или растянуться, что приводит к ухудшению работы сцепления.

Основными причинами возникновения проблем с работой гидравлического привода сцепления может быть следующее:

  1. Не герметичность систем трубопроводов.
  2. Отсутствие или малое количество рабочей жидкости в системе.
  3. Выход из строя одного из цилиндров из-за износа манжет, перекоса штока или повреждения наружного корпуса.

В случае с электрогидравлической системой к выше приведенным неисправностям гидравлической системы можно добавить проблемы с электрикой, механизмом, который приводит в действие цилиндры, системой управления работы привода.

Привод сцепления должен всегда находиться в исправном состоянии, поэтому необходимо своевременно обращаться на специализированные сервисные центры, где опытные мастера смогут провести качественную диагностику и ремонт отдельных элементов привода.

Сцепление автомобиля: назначение и устройство

Назначение и устройство сцепления

Сцепление служит для кратковременного разъединения двигателя от трансмиссии и плавного их соединения при трогании с места, а также при переключении передач. Сцепление состоит из привода и механизма сцепления.

Устройство сцепления автомобиля

Схема гидравлического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал;
  2. маховик;
  3. ведомый диск;
  4. нажимной диск;
  5. кожух сцепления;
  6. нажимные пружины;
  7. отжимные рычаги;
  8. нажимной подшипник;
  9. вилка выключения сцепления;
  10. рабочий цилиндр;
  11. трубопровод;
  12. главный цилиндр;
  13. педаль сцепления;
  14. картер сцепления;
  15. шестерня первичного вала;
  16. картер коробки передач;
  17. первичный вал коробки передач.

Привод выключения сцепления

Привод выключения сцепления (гидравлического типа) состоит из:

  • педали,
  • главного цилиндра,
  • рабочего цилиндра,
  • вилки выключения сцепления,
  • нажимного подшипника,
  • трубопроводов.

При нажатии на педаль сцепления, усилие ноги водителя, через шток и поршень, передается жидкости, которая, в свою очередь, передает давление от поршня главного цилиндра на поршень рабочего. Далее шток рабочего цилиндра перемещает
вилку выключения сцепления и нажимной подшипник, который и передает усилие на механизм сцепления. Когда же водитель отпустит педаль, то под воздействием возвратных пружин все детали привода займут исходные позиции.

Механизм сцепления

Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Именно механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем вновь
плавно их соединять.

Кроме того, сцепление предохраняет детали трансмиссии от перегрузок. При неравномерном вращении коленчатого вала двигателя в трансмиссии возникают колебания. Для их гашения в сцеплении имеется гаситель колебаний или демпфер. Элементы механизма заключены в картер сцепления, который крепится к картеру двигателя.

Детали механизма сцепления

Механизм сцепления состоит из:

  • картера и кожуха,
  • ведущего диска (которым является маховик коленчатого вала двигателя),
  • нажимного диска с пружинами,
  • ведомого диска со специальными износостойкими накладками и гасителем колебаний.

Ведомый диск, связанный с первичным валом коробки передач, постоянно прижат к маховику нажимным диском под воздействием очень сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе, как единое целое, вращается при работе двигателя. Но это только тогда, когда водитель не трогает педаль сцепления, независимо от того едет ли или стоит на месте его автомобиль.

А для начала движения машины, необходимо прижать ведомый диск, связанный с ведущими колесами (через первичный вал коробки передач и другие составляющие трансмиссии), к вращающемуся маховику, то есть – включить сцепление.

Схема работы сцепления

Как правильно включать сцепление? Вначале приотпускаем педаль, то есть даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения. За счет сил трения диск, проскальзывая некоторое
время относительно маховика, тоже начнет вращаться, а ваш автомобиль потихоньку двигаться. Затем на две – три секунды удерживаем педаль сцепления в средней позиции для того, чтобы скорость вращения маховика и диска уравнялись.

Машина при этом немного увеличивает скорость движения. И, наконец, когда маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания с одинаковой скоростью, 100%-но передавая крутящий момент к коробке передач
и далее на ведущие колеса автомобиля, остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если при начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет. В худшем же варианте, что-нибудь еще и сломается, так как в этот момент возникает сильная ударная волна, которая многократно увеличивает нагрузки на все детали двигателя и агрегаты трансмиссии.

Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.

Основные неисправности сцепления

Сцепление «ведет» (выключается не полностью) из-за большого свободного хода педали сцепления, перекоса нажимного подшипника, коробления ведомого диска или поломки пружин. Для устранения неисправности следует отрегулировать свободный ход педали, удалить воздух из гидропривода, заменить неработоспособные диски и пружины.

Сцепление «пробуксовывает» (включается не полностью) из-за малого свободного хода педали, замасливания или износа фрикционных накладок ведомого диска, поломки пружин. Для устранения неисправности необходимо отрегулировать свободный ход педали, промыть или поменять диски, пружины.

Сцепление включается резко вследствие заеданий в механизме привода, задирах на рабочих поверхностях дисков, маховика и разрушения фрикционных накладок ведомого диска. Для устранения неисправности следует заменить неисправные узлы привода, устранить задиры на поверхностях дисков, заменить ведомый диск.

Подтекание тормозной жидкости в приводе выключения сцепления возможно из главного или рабочего цилиндров, а также в соединительных трубках.
Для устранения неисправности следует визуально определить место утечки и заменить неисправные узлы, с последующей прокачкой всего гидропривода (удалить из него воздух).

Эксплуатация сцепления

При эксплуатации автомобиля необходимо периодически проверять уровень в бачке, питающем жидкостью гидравлический привод сцепления. Если уровень окажется меньше нормы, то его обязательно следует восстановить, долив тормозной жидкости.
В противном случае, когда ее уровень понизится до нуля, усилие вашей ноги на педали сцепления будет передаваться в никуда.

Пониженный уровень жидкости или неправильная регулировка сцепления может привести к тому, что передачи на вашем автомобиле будут включаться с огромным усилием или вообще включаться не будут. И если, при полностью нажатой педали
сцепления, вам все-таки удастся «впихнуть» первую передачу, то автомобиль самопроизвольно начнет медленное движение, хотя в данный момент двигатель еще должен быть отделен от ведущих колес.

Как это может случиться и почему машина едет?

Описанная неприятность называется – сцепление ведет. Суть происходящего в следующем. В то время, когда ведомый диск сцепления не должен иметь контакта с маховиком, он все-таки за него немного цепляется, и поэтому часть крутящего момента передается на вал коробки передач и далее на ведущие колеса.

Со сцеплением может случиться неприятность и другого рода. Так как каждый раз, отпуская педаль сцепления, мы заставляем обе поверхности ведомого диска сильно тереться о железный маховик и не менее железный нажимной диск, то естественно боковые поверхности ведомого диска со временем изнашиваются.

Это нормальный процесс, предусмотренный конструкцией автомобиля, и ведомый диск является расходным материалом. Однако наступает момент, когда и первая передача включена, и педаль сцепления наверху, и «газуете» вы так, что у проезжающих мимо водителей «сердце кровью обливается». Но износ накладок ведомого диска уже настолько велик, что теперь он не зажимается между маховиком и нажимным диском с должным усилием, и, прокручиваясь, не передает крутящий момент от двигателя к трансмиссии. Описанное явление называется – сцепление пробуксовывает.

Конечно, здесь описан пример совсем уж глухого и слепого водителя, потому что машина намного раньше «предупреждала» его о том, что такой случай может произойти в ближайшее время. Еще раньше, на подходе к максимальному износу, ведомый диск начал пробуксовывать, сначала на четвертой передаче, затем на третьей и так далее.

Начало критического износа легко определить, двигаясь на четвертой передаче со скоростью 40 – 45 км/ч. Если при активном нажатии на педаль газа обороты
двигателя начинают увеличиваться, а машина продолжает движение с постоянной скоростью, то в подтверждение своей догадки вы еще и унюхаете специфический запах «подгорающих» накладок диска. Значит, пора покупать новый диск.

«Шелест» в районе сцепления и его пропадание при полностью нажатой педали сцепления означает, что вы должны готовится к замене выжимного подшипника. Резкие старты и ускорения машины, постоянное держание ноги на педали сцепления при
движении ведут к ускоренному износу не только сцепления, но и других агрегатов автомобиля.

Укорачивает срок службы сцепления и еще одна плохая привычка. Это когда водитель долго удерживает педаль сцепления в нажатом состоянии, например, на все время остановки перед красным сигналом светофора.

Сцепление – что такое сцепление

Сцепление – назначение и общее устройство

Сцепление служит для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения.

Сцепление состоит из нажимного (ведущего) диска, ведомого диска, выжимного подшипника и привода выключения.

Привод выключения сцепления может быть гидравлическим либо тросовым. В обоих случаях он предназначен для передачи усилия от педали сцепления к выжимному подшипнику.

Нажимной (ведущий) диск закреплен на маховике. Ведомый диск сцепления находится между нажимным диском и маховиком. Ведомый диск соединен с первичным валом коробки передач шлицевым зацеплением.

Сцепление – привод сцепления

Как это все работает? При нажатии педали сцепления сначала ничего не происходит (выбирается свободный ход), затем выжимной подшипник начинает давить на лепестки диафрагменной пружины нажимного диска. В результате нажимной диск незначительно смещается в сторону от маховика. Ведомый диск перестает быть зажатым между маховиком и ведущим диском, начинает проскальзывать между ними. Вращение от коленчатого вала двигателя перестает передаваться на первичный (входной) вал коробки передач, и вал останавливается. Это позволяет водителю включить первую передачу в коробке передач. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

Для этого необходимо плавно отпустить педаль. Нажимной диск начнет прижиматься к ведущему, одновременно прижимая его к маховику. А в одной из следующих глав можно будет узнать краткий обзор систем управления автомобиля – органы управления автомобилем.

Сначала ведомый диск будет проскальзывать относительно ведущего, в этот момент первичный вал коробки передач начнет вращаться, но пока его частота вращения меньше частоты вращения коленчатого вала.

Это тот самый момент, когда автомобиль начинает движение с места.

По мере возрастания прижимной силы угловые скорости ведущего и ведомого дисков выравниваются.

Частота вращения первичного вала КП становится равной частоте вращения коленчатого вала. Автомобиль равномерно движется.

Если увеличить частоту вращения коленчатого вала (нажать педаль газа), частота вращения первичного вала КП также увеличится. Автомобиль начнет двигаться быстрее.

Трос одним концом соединен с рычагом педали, а вторым – с рычагом вилки выключения сцепления. Нажатие педали сцепления вызывает перемещение троса в оболочке. В результате трос тянет рычаг, вилка поворачивается на оси и давит на выжимной подшипник. Выжимной подшипник передает это давление на лепестки диафрагменной пружины нажимного диска.

Гидравлический привод состоит из главного и рабочего цилиндров, соединенных трубопроводом. Рабочий цилиндр может быть установлен снаружи картера сцепления и воздействовать на вилку выключения сцепления или может быть установлен внутри картера, в сборе с выжимным подшипником.

При нажатии педали сцепления поршень в главном цилиндре давит на жидкость, находящуюся в трубопроводе. Это давление передается жидкостью на поршень рабочего цилиндра. Поршень смещается вместе со штоком и тем самым поворачивает вилку выключения сцепления. Противоположный конец вилки давит на выжимной подшипник, а подшипник – на диафрагменную пружину. Пружина отжимает нажимной диск и сцепление выключается.

В гидравлическом приводе выключения сцепления используется тормозная жидкость. Жидкость в гидропривод сцепления поступает либо из отдельного бачка, либо из бачка гидропривода тормозов, установленного на главном тормозном цилиндре. Более подробно классификация тормозных жидкостей и их основные свойства будут рассмотрены в описании гидропривода тормозной системы.

В процессе эксплуатации ведомый диск сцепления изнашивается, в результате уменьшается толщина его фрикционных накладок. Это приводит к изменению рабочего хода педали. Для компенсации износа диска требуется периодическая регулировка привода. На многих современных моделях это выполняется автоматически специальным устройством.

Если автоматического устройства нет, то регулировка выполняется вручную, при очередном техническом обслуживании. В случае тросового привода регулировка выполняется путем изменения длины троса.

При гидравлическом приводе выключения сцепления обычно предусмотрена регулировка длины штока одного из цилиндров (главного или рабочего).

Ссылка на основную публикацию